Role of the septum in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex.
نویسندگان
چکیده
Intracerebroventricular administration of corticotropin-releasing hormone (CRH) elicits a constellation of behavioral, autonomic, and endocrinological changes typically observed in stress. One of the behavioral changes after intracerebroventricular CRH is a profound increase of startle amplitude (CRH-enhanced startle). The present study examined the role of the septum in CRH-enhanced startle. The septum has direct and indirect connections to the amygdala and inhibits the amygdala. Electrophysiological data show that CRH in the septum is inhibitory. Therefore, it has been hypothesized that intracerebroventricular CRH inhibits the septum, which in turn disinhibits the amygdala, resulting in a constellation of changes via activation of amygdala efferent targets. In testing this hypothesis, it was found that electrolytic lesions of the medial septum, but not the lateral septum, blocked CRH-enhanced startle. However, fiber-sparing chemical lesions of the medial septum did not block CRH-enhanced startle, suggesting that the blockade seen with the electrolytic lesions was caused by damage to fibers of passage. A major fiber bundle passing through the medial septum is the fornix, the primary efferent pathway for the hippocampus. Fimbria transection blocked CRH-enhanced startle almost completely, whereas the large electrolytic lesions of the dorsal hippocampus did not block CRH-enhanced startle. Taken together, these data suggest that perhaps the ventral hippocampus and its efferent target areas, which communicate via the fimbria, may be critically involved in CRH-enhanced startle.
منابع مشابه
Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex.
Intracerebroventricular (icv) infusion of corticotropin-releasing factor (CRF) was previously found to produce a long-lasting, dose-dependent (0.1-1.0 microgram) increase in the amplitude of the acoustic startle reflex. The present study sought to determine where in the CNS CRF acts to increase startle. Intracisternal infusion of CRF (0.1-1.0 microgram) increased startle with a time course and ...
متن کاملRole of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex.
Previously, we demonstrated that transection of the fimbria/fornix blocked the excitatory effect of corticotropin-releasing hormone (CRH) on startle (CRH-enhanced startle), suggesting that the hippocampus and its efferent target areas that communicate via the fimbria may be critically involved in CRH-enhanced startle. The bed nucleus of the stria terminalis (BNST) receives direct projections fr...
متن کاملCorticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex.
Intracerebroventricular infusion of corticotropin-releasing factor (CRF) (0.1-1.0 micrograms) produced a pronounced, dose-dependent enhancement of the acoustic startle reflex in rats. This excitatory effect began about 20-30 min after infusion, grew steadily over the 2 hr test period, and lasted at least 6 hr. Higher doses of CRF (10 micrograms) often produced marked facilitation and then inhib...
متن کاملLateral Hypothalamus Corticotropin Releasing Hormone Receptor-1 Inhibition Modulates Stress- Induced Anxiety Behavior
Stress is a reaction to unwanted events disturbing body homeostasis which influences its pathways and target areas. Stress affects the brain through the lateral hypothalamic area (LHA) orexinergic system that mediates the effect of corticotropin-releasing hormone (CRH) through CRH receptor type 1 (CRHr1). Therefore, this study explores the outcome of stress exposure on anxiety development and t...
متن کاملکاربرد فیلم در القای هیجانهای خوشایند و ناخوشایند و تغییر بازتاب از جا پریدن
Objective : the studies indicate that the "eye-blink" components of "acoustic startle reflex" can be modulated through emotionally slide stimuli. Pleasant stimulants reduce eye-blink amplitude, whereas unpleasant stimulants enhance them. Method: the present study examines the modulation of the acoustic startle reflexes through a short film clips (2-min), classified as pleasant, unpleasant and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 16 شماره
صفحات -
تاریخ انتشار 1997